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The levels of antioxidative enzymes are regulated 
by gene expressions as well as by post-translational 
modifications. Although their functions are to scavenge 
reactive oxygen (ROS) and nitrogen species (RNS), they 
may also be targets of various oxidants. When ROS and 
RNS modify the functions of antioxidative enzymes, 
especially glutathione peroxidase, they may induce 
apoptotic cell death in susceptible ceils. It is con- 
ceivable, therefore, that at least a part of the apoptotic 
pathways mediated by ROS and RNS may be associated 
with modification of the redox regulation of cellular 
functions due to elevations of such substances. In this 
article we review recent findings about the effects of 
various oxidative conditions associated with alteration 
of these antioxidative enzymes and the concomitant 
cellular damage induced. 
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INTRODUCTION 

Reactive oxygen (ROS) and nitrogen species 
(RNS) are implicated as causes of various disease 
conditions such as inflammation, cancer, diabetes, 

and aging, t~J Production of superoxide occurs by 
a one electron reduction of molecular oxygen 
followed by  a reaction chain producing harmful 
ROS. Antioxidative enzymes participate in detox- 
ification of these harmful compounds. Suppres- 
sion of their gene expression and dysfunction of 
these enzymatic activities cause serious damage 
to cells by  augmenting intraceUular oxidative 
state. While Mn-superoxide dismutase (Mn- 
SOD) can be induced by various stimuli such as 
inflammatory cytokines, phorbol ester, and ROS, 
Cu,Zn-SOD is constitutively expressed in most 
cells. [2] The expression of catalase is restricted to 
certain ceils. Members of the glutathione peroxi- 
dase (GPx) family occur in specific cellular 
locations and are expressed in a tissue-specific 
manner. Their transcription and translation are 
regulated by the trace element, selenium, because 
selenocysteine (Sec) is essential for their activity. 
A novel enzyme family with thioredoxin-depen- 
dent peroxidase activities has been found and 
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called peroxiredoxin, t31 Five of these enzymes 
have been cloned t41 from a single mammalian 
species and although they exhibit structural 
similarity to GPx, their catalytic center contains 
Cys instead of Sec. Various biological effects other 
than peroxidase activity have also been reported. 
Our discussion will focus on the different mech- 
anisms of regulation of SODs and GPxs under 
a variety of conditions. 

GENETIC DEFECT IN ANTIOXIDAT1VE 
ENZYME GENES: SOD1 MUTATION 
IN FAMILIAL AMYOTROPHIC 
LATERAL SCLEROSIS (FALS) 

Cu,Zn-SOD exists at micromolar levels in most 
cells and defects in the SOD gene have been 
identified in patients with the motor neuron 
disease, familial amyotrophic lateral sclerosis 
(FALS). Is] At present more than fifty mutations 
have been found to be linked to FALS. SOD 
activities in erythrocytes isolated from FALLS 
patients are significantly lower than those in 
normal and sporadic ALS patients. E6] A decrease 
in SOD activity could lead to enhanced levels of 
hydroxyl radicals, and consequent neuronal cell 
damage. However, mutant  SODs produced in 
heterogenous systems such as insect [7] and 
monkey cells Is] exhibit almost the same or only 
slightly lower activities. Both inhibition of SOD 
activity t9] and overexpression of mutant  Cu, Zn- 
SOD in transgenic mice t~°] induce neuronal cell 
death, suggesting that the mechanism by which 
FALS is caused is not simply due to decreased 
SOD activity. Acquisition of some additional 
function by the SOD activity is presumed to be 
the actual cause of this fatal disease. 

Several groups showed by electron spin reso- 
nance (ESR) using 5,5-dimethyl-l-pyrroline-N- 
oxide (DMPO) as a spin trap reagent that mutant 
SODs exhibit enhanced hydroxyl radical produc- 
tion via their reaction with hydrogen per- 
oxide. [n'~2] Although wild-type enzyme also has 
this free radical producing activity, some mutant 

SODs show decreased Km values but maintain the 
same apparent Vma× as the wild-type. However, 
recent opposing data has been reported and seem 
to be more convincing. [13] Crow et al. E~4] showed 
that the binding affinity for Zn ion is lowered in 
mutant  SODs. We have found that at least seven 
mutant  SODs are less stable than the wild-type 
enzyme and some show only weak binding for 
Cu (unpublished data). Since free Cu can mediate 
a Fenton-type reaction to produce hydroxyl 
radicals, the released metal ions, but not enzyme 
activity, may be a direct cause of the disease. 
In terms of cellular histology, Lewy body-like 
inclusions are often seen in degenerating motor 
neurons and mutant SODs are also detected in 
them, suggesting that mutant SOD protein 
may undergo aggregation within the neurons. 
Supporting evidence for this hypothesis is pro- 
vided by using transgenic mice, which exhibit 
mutant  SoD-containing inclusions like those of 
patients. I15] Although several other possible 
mechanisms have been proposed, E~6] this appear 
to be the most attractive one. 

ALTERATION OF ANTIOXIDATIVE 
ENZYME ACTIVITIES THROUGH 
GENE EXPRESSION 

Activities of some antioxidative enzymes are 
regulated at the stage of gene expression. The ex- 
pression of the antioxidative enzymes, Mn-SOD, 
Cu,Zn-SOD: catalase, and glutathione- S-transfer- 
ase subunits 1 and 2 in isolated hepatocytes [17] 
are suppressed by TGF-fll. A lowered amount of 
Mn-SOD has been demonstrated in hepatoma 
where TGF-fll is expressed. [lsl Since TGF-fll 
induces apoptosis in hepatocytes, suppression 
of these anfioxidative enzyme genes may trigger 
apoptosis due to the accumulation of intracellu- 
lar peroxides. 

Animals fed Se-deficient diets suffer from 
disorders in several organs such as liver, heart, 
and kidney. A deficiency of this trace element 
causes defects in the syntheses of Sec-containing 
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proteins such as GPx and thioredoxin reduc- 
tase. I191 Ceils cultured under Se-deficient condi- 
tions are more sensitive to H202 and/or  organic 
peroxides than those cultured in conventional 
medium. Despite maintaining other antioxidative 
enzyme levels constant, Se-deficient cells after 
treatment with H20 2 exhibit internucleosomal 
DNA fragmentation characteristic of apopto- 
sis. I2°J Ceils transfected with GPx cDNA become 
resistant to apoptosis following withdrawal of 
growth factors. I211 GPx can compensate for the 
hypersensitivity to oxidant stress of Cu,Zn-SOD- 
overproducing cells and suppress the induction 
of apoptotic cell death. [221 Mitochondria may be 
an important target of ROS because overexpres- 
sion of Mn-SOD I231 or of phospholipid hydro- 
peroxide GPx [24] protected cells from ROS. TGF-fl 
decreases GPx expression and concomitantly 
increases susceptibility of pancreatic t-ceil lines 
to oxidative stress-induced apoptosis, supporting 
a cytoprotective role for this enzyme. [2sl 

ROLES OF ROS AND RNS IN 
DESTRUCTION OF ANTIOXIDATIVE 
ENZYMES 

In addition to genetic defects and transcriptional 
suppression of antioxidative enzymes, post- 
translational modifications also lower enzymatic 
activities. ROS and RNS are involved in oxidative 
modification of cellular components and cause 
various disorders including neuronal, cardiovas- 
cular, and inflammatory disease. Insulin-depen- 
dent diabetes mellitus (IDDM) is mediated by an 
autoimmune mechanism or inflammatory pro- 
cess that is characterized by destruction of pan- 
creatic fl-ceUs. Interleukin-l~ (IL-I~) has been 
proposed to play an important role in generating 
these conditions. Since IL-I~ stimulates the 
induction of NOS II in pancreatic t-cells, NO is 
imph'cated as an effector molecule for glucose- 
induced insulin secretion as well as cellular injury. 
We examined effects of NO on rat pancreatic islet 
cells and ~-cell-derived HIT ceils and found that 

both exogenous NO released from a NO donor, 
S-nitro-N-acetyl-D,L-penicillamine (SNAP), and 
endogenously generated NO from NOS II by 
treatment with IL-I~/brought about apoptosis in 
these cells. [261 

Peroxynitrite, a molecule with strong oxidant 
activity that is formed by interaction of NO with 
superoxide, also causes apoptosis in several types 
of cells. Thus it is conceivable that NO induces 
apoptosis in certain cells through formation of 
peroxynitrite. Many molecules possessing essen- 
tial Fe-S complexes, heme, or free thiol groups 
are potent targets for NO and several mechanisms 
are reported for this type of apoptosis. Contra- 
riwise accumulating evidence suggests that NO 
also functions as a mediator for anti-apoptotic 
effects. Several hypotheses have been proposed 
to explain this. [271 Cells such as neurons and pan- 
creatic t-cells, which are sensitive to NO-medi- 
ated apoptosis, have rather poor redox capacities. 
However, some cancer cells and hepatocytes in 
which NO suppresses apoptosis have stronger 
redox capacities than the former cells (Figure 1). 
Hence, redox potentials of a cell may be a major 
determinant for NO to function as an apoptotic or 
an anti-apoptotic agent. 

Marked induction of NOS II, an inducible form, 
and concomitant suppression of SODs and GPx 
activities are found in the inflammatory lesions 
of experimental colitis in rats.[281 Since both NO 
and superoxide are produced in colitis tissues, 
the formation of peroxynitrite is possible. I29] 
Although GPx can detoxify peroxynitrite, I3°1 the 
NO donor, SNAP, selectively inhibits GPx activ- 
ity, resulting in an increased cellular peroxide 
level. E31t Since GPx is inactivated specifically by 
SNAP, nitrosation and oxidation of a specific 
residue in the catalytic center is a likely cause. 
GPx contains a rare amino acid Sec, which is more 
reactive than thiols and is essential for GPx activ- 
ity. Thus the target for RNS in this case is the active 
center Sec. [321 This process would be mediated by 
a two step reaction (Figure 2). The first step would 
be the nitrosation of a selenium and is reversed 
by a reductant such as dittu'ot~eitol. The second 
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FIGURE 1 ROS and RNS induce oxidative modification and nitrosation of free thiol in cells. A portion of oxidized 
glutathione (GSSG) is pumped out by a specific transporter in plasma membrane. 

reaction is related to formation of a sulfur-seleno 
bridge between Cys91 and Sec45 in bovine GPx 
and is not reversed by reducing agents. Since 
3-morpholinosydnonimine N-ethylcarbamide 
(SIN-l), a precursor of peroxynitrite, as well as 
synthetic peroxynitrite inactivate GPx irrevers- 
ibly, the latter process would be caused by 
peroxynitrite. As a consequence, inactivation of 
GPx would increase peroxide levels followed by 
a ROS-mediated chain reaction, leading to vari- 
ous harmful cellular effects. 

INVOLVEMENT OF THE GLYCATION 
REACTION IN THE DYSFUNCU~ON 
OF ANTIOXIDATIVE ENZYMES 

The carbonyl groups of reducing sugars interact 
with free amino groups in proteins, lipids, 
and nucleic acids to form adducts, which are 
converted to glycation end products (AGE). ROSs 

are produced during this process. In diabetic con- 
ditions, the enhanced glucose levels lead to the 
accumulation of glycated proteins. The Cu,Zn- 
SOD of erythrocytes is glycated and inactivated 
under diabetic conditions. I331 The ROS produced 
from the Amadori product cause site-specific 
cleavage of Cu,Zn-SOD followed by random 
fragmentation through the Cu-mediated Fenton- 
type reactions.[341 Methylglyoxal and 3-deoxyglu- 
cosone, intermediates of the glycation reaction, 
increase levels of intracellular ROS and induce 
cellular injury, t3sl Thus in addition to the cross- 
linking of proteins, increases in reactive inter- 
mediates such as ROS and dicarbonyl compounds 
may cause age-related diseases as well as diabetic 
complications. 

While glucose is the major reducing sugar in 
our body, fructose produced by the polyol path- 
way has stronger glycating capacity than glucose 
because the amount of linear, non-furanose form, 
is about one order of magnitude higher than that 
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FIGURE 2 A hypothetical pathway for NO- and peroxynitrite-mediated GPx inactivation. 

of glucose at a physiological pH. Fructose and 
ribose have been found to induce apoptosis more 
rapidly than glucose in a pancreatic fl-ceU line. I361 
The levels of intracellular peroxides, protein 
carbonyls, and malondialdehyde are increased 
in the presence of fructose. The adduct of fructose 
with an amino group, called the Heyns product, is 
structurally different from the glucose Amadori 
derivative. It is possible to distinguish them by 
using specific antibodies capable of recognizing 
the Amadori [aT] and Heyns products. [38] We have 
utilized these antibodies for evaluation of the 
extent of glycation reactions in lens tissueS. [39] It is 
apparent that not only reducing sugars but also 
other compounds with aldehyde or ketone groups 
may undergo reactions similar to those engen- 
dered by glucose and fructose. 

Cells have a scavenging system for removing 
harmful carbonyl compounds, such as methyl- 

glyoxal and 3-deoxyglucosone, based on 
NADPH-dependent enzymes. We have identified 
aldehyde reductase, a member of the aldo-keto 
reductases, as an entity. [4°] Aldose reductase, 
another member of the aldo-keto reductase, also 
belongs to this enzyme family. The cytotoxic 
effects of 3-deoxyglucosone and glyceraldehyde 
are enhanced by treatment of cells with an aldose 
reductase inhibitors. I411 It should be remembered 
that aldose reductase together with sorbitol de- 
hydrogenase also constitutes a metabolic polyol 
pathway, which converts glucose to fructose. 
Thus aldose reductase acts as a biphasic enzyme 
depending on the subs~ates. Carbonyl com- 
pounds can be eliminated by cells to some extent 
through actions of aldo-keto reductases. How- 
ever, prolonged exposure to them would affect 
NADPH levels and trigger redox imbalances 
(Figure 3). Since redox systems are involved in 
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H202 1420 ;< 
reclTRx ~ oxTRx 

ROOH~ ,~.,~ ~ GSH 
( 

ROH ~eec 

NADPH 

02 

o ~ ou D I 
R-C-H R-C-H I H 

FIGURE 3 Interrelationships among NO synthases, aldo-keto reductases and redox systems through NADPH. GPx, glu- 
tathione peroxidase; GR, glutathione reductase; PRx, peroxiredoxin; TRx, thioredoxin; TR, thioredoxin reductase; NOS, NO 
synthase. 

m a n y  processes  such  as gene  regula t ion ,  cell 
g r o w t h ,  a n d  s u p p r e s s i o n  of  apoptos i s ,  [42] defec t  

in  t h e m  w o u l d  also lead to  cel lular  d a m a g e .  
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